Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.716
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626052

RESUMO

Physical exercise is known to modulate the intestinal microbiota composition and control the symptoms of metabolic syndrome. In this research, we intend to investigate and compare the effect of high-intensity interval and continuous endurance trainings (HIIT and CET) on cecal microbiota metabolites and inflammatory factors in diabetic rats. A number of Wistar rats were made diabetic by a high-fat diet and trained under two types of exercise protocols, HIIT and CET. After taking samples from the cecal tissue and serum of rats to reveal the effect of exercise, three microbial species from the Firmicute and Bacteroid phyla, which are the main types of intestinal microbes, and their metabolites include two short-chain fatty acids (SCFAs), butyrate and propionate and also, the inflammatory factors TLR4 and IL6 were analyzed through quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and Enzyme-linked immunosorbent assay (ELISA) methods. In general, exercise while increasing the representative of Firmicute has caused a relative reduction of Bacteroides and improved the concentration of SCFAs. In this regard, HIIT outperforms CET in up-regulating Akkermansia and Butyrivibrio expression, and butyrate and propionate metabolites concentration. Also, both exercises significantly reduced cecal expression of TLR4 and sera concentration of IL6 compared to the diabetic group, although the reduction rate was higher in the CET group than in HIIT. Our findings suggest that some symptoms of metabolic syndrome such as intestinal dysbiosis and the resulting metabolic disorders are better controlled by HIIT and inflammation by CET. Certainly, more extensive research on other contributing factors could help clarify the results.


Assuntos
Diabetes Mellitus Experimental , Treinamento Intervalado de Alta Intensidade , Síndrome Metabólica , Microbiota , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , Propionatos/farmacologia , Interleucina-6/farmacologia , Receptor 4 Toll-Like , Ácidos Graxos Voláteis/metabolismo , Butiratos/farmacologia , Treinamento Intervalado de Alta Intensidade/métodos
2.
J Transl Med ; 22(1): 306, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528587

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) play a pivotal role in reshaping the tumor microenvironment following radiotherapy. The mechanisms underlying this reprogramming process remain to be elucidated. METHODS: Subcutaneous Lewis lung carcinoma (LLC) murine model was treated with hypofrationated radiotherapy (8 Gy × 3F). Single-cell RNA sequencing was utilized to identify subclusters and functions of TAMs. Multiplex assay and enzyme-linked immunosorbent assay (ELISA) were employed to measure serum chemokine levels. Bindarit was used to inhibit CCL8, CCL7, and CCL2. The infiltration of TAMs after combination treatment with hypofractionated radiotherapy and Bindarit was quantified with flow cytometry, while the influx of CD206 and CCL8 was assessed by immunostaining. RESULTS: Transcriptome analysis identified a distinct subset of M2-like macrophages characterized by elevated Ccl8 expression level following hypofractionated radiotherapy in LLC-bearing mice. Remarkbly, hypofractionated radiotherapy not only promoted CCL8high macrophages infiltration but also reprogrammed them by upregulating immunosuppressive genes, thereby fostering an immunosuppressive tumor microenvironment. Additioinally, hypofractionated radiotherapy enhanced the CCL signaling pathway, augmenting the pro-tumorigenic functions of CCL8high macrophages and boosting TAMs recruitment. The adjunctive treatment combining hypofractionated radiotherapy with Bindarit effectively reduced M2 macrophages infiltration and prolonged the duration of local tumor control. CONCLUSIONS: Hypofractionated radiotherapy enhances the infiltration of CCL8high macrophages and amplifies their roles in macrophage recruitment through the CCL signaling pathway, leading to an immunosuppressive tumor microenvironment. These findings highlight the potential of targeting TAMs and introduces a novel combination to improve the efficacy of hypofractionated radiotherapy.


Assuntos
Carcinoma Pulmonar de Lewis , Macrófagos , Animais , Camundongos , Carcinoma Pulmonar de Lewis/radioterapia , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Indazóis/farmacologia , Macrófagos/metabolismo , Propionatos/farmacologia , Análise de Sequência de RNA , Microambiente Tumoral/genética , Análise de Célula Única , Quimiocina CCL8
3.
Chem Biol Interact ; 393: 110957, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513929

RESUMO

Huntington's disease (HD) is an inheritable autosomal-dominant disorder that targets mainly the striatum. 3-Nitropropionic acid (3-NP) induces obvious deleterious behavioral, neurochemical, and histological effects similar to the symptoms of HD. Our study aimed to examine the neuroprotective activity of tropisetron, an alpha-7 neuronal nicotinic acetylcholine receptor (α-7nAChR) agonist, against neurotoxic events associated with 3-NP-induced HD in rats. Forty-eight rats were randomly allocated into four groups. Group I received normal saline, while Groups II, III and IV received 3-NP for 2 weeks. In addition, Group III and IV were treated with tropisetron 1 h after 3-NP administration. Meanwhile, Group IV received methyllycaconitine (MLA), an α-7nAChR antagonist, 30 min before tropisetron administration. Treatment with tropisetron improved motor deficits as confirmed by the behavioral tests and restored normal histopathological features of the striatum. Moreover, tropisetron showed an anti-oxidant activity via increasing the activities of SDH and HO-1 as well as Nrf2 expression along with reducing MDA level. Tropisetron also markedly upregulated the protein expression of p-PI3K and p-Akt which in turn hampered JAK2/NF-κB inflammatory cascade. In addition, tropisetron showed an anti-apoptotic activity through boosting the expression of Bcl-2 and reducing Bax expression and caspase-3 level. Interestingly, all the aforementioned effects of tropisetron were blocked by pre-administration of MLA, which confirms that such neuroprotective effects are mediated via activating of α-7nAChR. In conclusion, tropisetron showed a neuroprotective activity against 3-NP-induced HD via activating PI3K/Akt signaling and suppressing JAK2/NF-κB inflammatory axis. Thus, repositioning of tropisetron could represent a promising therapeutic strategy in management of HD.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Receptores Nicotínicos , Animais , Ratos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , NF-kappa B/metabolismo , Nitrocompostos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Propionatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais , Tropizetrona/uso terapêutico
4.
J Steroid Biochem Mol Biol ; 240: 106509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508473

RESUMO

Hyperglycemia is known as one of the main causes of infertility in human societies. Indole propionic acid (IPA) is produced by intestinal microbiota and has antioxidant and anti-inflammatory properties. This study aims to investigate the effects of IPA on molecular indices of steroidogenesis, ER stress, and apoptosis induced by high glucose (HG) in granulosa cells. Primary GCs, isolated from ovarian follicles of Rats were cultured in 5 mM (control) and 30 mM (HG) of glucose and in the presence of 10 and 20 µM of IPA for 24 h. The cell viability was assessed by MTT. The gene expression of P450SCC, 3ßHSD, CYP19A, BAX, BCL2, and STAR was evaluated by Real-Time PCR. Protein expression of ATF6, PERK, GRP78, and CHOP determined by western blot. Progesterone, estradiol, IL-1ß, and TNF-α were measured by ELISA. HG decreased the viability, and expression of P450SCC, 3ßHSD, CYP19A, BCL2, STAR, and increased BAX. 10 and 20 µM of IPA increased cell viability, expression of P450SCC, 3ßHSD, CYP19A, BCL2 and STAR and decreased BAX compared to the HG group. The expression of ATF6, PERK, GRP78, and CHOP proteins increased by HG and IPA decreased the expression of these proteins compared to the HG group. Also, HG decreased progesterone and estradiol levels and increased IL-1ß and TNF-α. IPA significantly increased progesterone and estradiol and decreased IL-1ß and TNF-α compared to the HG group. IPA can improve the side effects of HG in GCs of rats, as responsible cells for fertility, by improving steroidogenesis, regulation of ER-stress pathway, suppression of inflammation, and apoptosis.


Assuntos
Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Glucose , Células da Granulosa , Indóis , Animais , Feminino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Ratos , Indóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Propionatos/farmacologia , Células Cultivadas , Progesterona/metabolismo , Biomarcadores/metabolismo , Ratos Sprague-Dawley
5.
Int Immunopharmacol ; 130: 111778, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38432147

RESUMO

OBJECTIVE: To investigate the mechanism of action of fatty acid receptors, FFAR1 and FFAR4, on ulcerative colitis (UC) through fatty acid metabolism and macrophage polarization. METHODS: Dextran sulfate sodium (DSS)-induced mouse model of UC mice was used to evaluate the efficacy of FFAR1 (GW9508) and FFAR4 (GSK137647) agonists by analyzing body weight, colon length, disease activity index (DAI), and histological scores. Real-time PCR and immunofluorescence analysis were performed to quantify the levels of fatty acid metabolizing enzymes and macrophage makers. FFA-induced lipid accumulation in RAW264.7 cells was visualized by Oil Red O staining analysis, and cells were collected to detect macrophage polarization by flow cytometry. RESULTS: The combination of GW9508 and GSK137647 significantly improved DSS-induced UC symptoms, caused recovery in colon length, and decreased histological injury. GW9508 + GSK137647 treatment upregulated the expressions of CD206, lipid oxidation enzyme (CPT-1α) and anti-inflammatory cytokines (IL-4, IL-10, IL-13) but downregulated those of CD86, lipogenic enzymes (ACC1, FASN, SCD1), and pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α). Combining the two agonists decreased FFA-induced lipid accumulation and increased CD206 expression in cell-based experiments. CONCLUSION: Activated FFAR1 and FFAR4 ameliorates DSS-induced UC by promoting fatty acid metabolism to reduce lipid accumulation and mediate M2 macrophage polarization.


Assuntos
Colite Ulcerativa , Ácidos Graxos não Esterificados , Macrófagos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metilaminas/farmacologia , Metilaminas/uso terapêutico , Camundongos Endogâmicos C57BL , Propionatos/farmacologia , Propionatos/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas
6.
Nutrients ; 16(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398822

RESUMO

The fermentation of non-digestible carbohydrates produces short-chain fatty acids (SCFAs), which have been shown to impact both skeletal muscle metabolic and inflammatory function; however, their effects within the obese skeletal muscle microenvironment are unknown. In this study, we developed a skeletal muscle in vitro model to mimic the critical features of the obese skeletal muscle microenvironment using L6 myotubes co-treated with 10 ng/mL lipopolysaccharide (LPS) and 500 µM palmitic acid (PA) for 24 h ± individual SCFAs, namely acetate, propionate and butyrate at 0.5 mM and 2.5 mM. At the lower SCFA concentration (0.5 mM), all three SCFA reduced the secreted protein level of RANTES, and only butyrate reduced IL-6 protein secretion and the intracellular protein levels of activated (i.e., ratio of phosphorylated-total) NFκB p65 and STAT3 (p < 0.05). Conversely, at the higher SCFA concentration (2.5 mM), individual SCFAs exerted different effects on inflammatory mediator secretion. Specifically, butyrate reduced IL-6, MCP-1 and RANTES secretion, propionate reduced IL-6 and RANTES, and acetate only reduced RANTES secretion (p < 0.05). All three SCFAs reduced intracellular protein levels of activated NFκB p65 and STAT3 (p < 0.05). Importantly, only the 2.5 mM SCFA concentration resulted in all three SCFAs increasing insulin-stimulated glucose uptake compared to control L6 myotube cultures (p < 0.05). Therefore, SCFAs exert differential effects on inflammatory mediator secretion in a cell culture model, recapitulating the obese skeletal muscle microenvironment; however, all three SCFAs exerted a beneficial metabolic effect only at a higher concentration via increasing insulin-stimulated glucose uptake, collectively exerting differing degrees of a beneficial effect on obesity-associated skeletal muscle dysfunction.


Assuntos
Interleucina-6 , Propionatos , Humanos , Propionatos/farmacologia , Interleucina-6/metabolismo , Ácidos Graxos Voláteis/metabolismo , Obesidade , Butiratos , Acetatos , Fibras Musculares Esqueléticas/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Glucose/metabolismo , Técnicas de Cultura de Células , Mediadores da Inflamação
7.
Free Radic Biol Med ; 213: 36-51, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215892

RESUMO

Short-chain fatty acids (SCFAs), particularly propionate and butyrate, have been reported in many cancers. However, the relationship between propionate and acute myeloid leukemia (AML) remains unclear. Additionally, Acyl-CoA synthetase long chain family member 4 (ACSL4) has been reported to regulate immunity in solid tumors, but there are still many gaps to be filled in AML. Here, we discovered the underlying mechanism of propionate and ACSL4-mediated ferroptosis for immunotherapy. Our results showed that the level of propionate in the AML patients' feces was decreased, which was correlated to gut microbiota dysbiosis. Moreover, we demonstrated that propionate suppressed AML progression both in vivo and in vitro. In mechanism, propionate induced AML cells apoptosis and ferroptosis. The imbalance of reactive oxygen species (ROS) and redox homeostasis induced by propionate caused mitochondrial fission and mitophagy, which enhanced ferroptosis and apoptosis. Furthermore, ACSL4-mediated ferroptosis caused by propionate increased the immunogenicity of AML cells, induced the release of damage-associated molecular patterns (DAMPs), and promoted the maturation of dendritic cells (DCs). The increased level of immunogenicity due to ferroptosis enable propionate-based whole-cell vaccines to activate immunity, thus further facilitating effective killing of AML cells. Collectively, our study uncovers a crucial role for propionate suppresses AML progression by inducing ferroptosis and the potential mechanisms of ACSL4-mediated ferroptosis in the regulation of AML immunity.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Propionatos/farmacologia , Mitofagia , Apoptose , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia
8.
Behav Brain Res ; 461: 114864, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38220060

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder characterized by degeneration of the striatum; it results in oxidative stress and motor deficits. Thyroid hormones regulate oxidative metabolism. In the present study, we evaluated the effect of administration of levothyroxine (LT-4) on neurobehavioral, oxidative stress, and histological changes in a rat model of HD. Forty-eight Wistar male rats were divided into the following six groups (n = 8): Group 1 (control) received physiological saline intraperitoneally (ip). Groups 2 and 3 received L-T4,30 and L-T4100 (µg/kg, ip, respectively) daily for 7 days. Group 4 (HD) received 3-nitropropionic acid (3-NP) (25 mg/kg, ip) daily for 7 days. Groups 5 and 6 received L-T4,30 and L-T4100 (µg/kg, ip, respectively) 30 min after 3-NP (25 mg/kg, ip) injection for the same duration. On the 8th day, behavioral parameters were evaluated with the Rotarod, Narrow beam walk, and Limb withdrawal tests. Oxidative markers such as Malondialdehyde (MDA) and Glutathione (GSH) levels and Superoxide dismutase (SOD) activity, in striatum tissue were measured. Moreover, striatum tissues were analyzed by Hematoxylin-eosin staining for histological alterations. We found that 3-NP administration caused motor incoordination and induced oxidative stress increased but reduced free radical scavenging. Also, increased amounts of lipid peroxides caused striatal damage as shown by histopathological evaluation. Administration of L-T4 led to increased falling time in the Rotarod, but reduced the time taken in Narrow beam walking and Limb withdrawal test. Furthermore, L-T4 increased antioxidant activity, decreased lipid peroxidation and ameliorated 3-NP-induced degeneration in neurons.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Ratos Wistar , Tiroxina/metabolismo , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Atividade Motora , Estresse Oxidativo , Nitrocompostos/toxicidade , Propionatos/farmacologia , Glutationa/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Corpo Estriado/metabolismo
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 507-520, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477660

RESUMO

Epirubicin (EPI) is an effective chemotherapeutic against breast cancer, though EPI-related cardiotoxicity limits its usage. Endogenously derived 3-indolepropionic acid (3-IPA) from tryptophan metabolism is of interest due to its antioxidant capabilities which may have cardioprotective effects. Supplementation with 3-IPA may abate EPI's cardiotoxicity, and herein we studied the possibility of lessening EPI-induced cardiotoxicity in Wistar rats. Experimental rats (n = 30; BW 180-200 g) were randomly distributed in five cohorts (A-E; n = 6 each). Group A (control), Group B (EPI 2.5 mg/mL), and group C (3-IPA 40 mg/kg) while Groups D and E were co-treated with EPI (2.5 mg/mL) together with 3-IPA (D: 20 and E: 40 mg/kg). Following sacrifice, oxidative status, lipid profile, transaminases relevant to cardiac function, and inflammatory biomarkers were analysed. Also, 8-hydroxyl-2'-deoxyguanosine (8-OHdG) and cardiac troponin T (cTnT) levels were assessed using an enzyme-linked immunosorbent assay (ELISA). EPI-initiated increases in cardiotoxicity biomarkers were significantly (p < 0.05) reduced by 3-IPA supplementation. Decreased antioxidant and increases in reactive oxygen and nitrogen species (RONS), 8-OHdG and lipid peroxidation were lessened (p < 0.05) in rat hearts co-treated with 3-IPA. EPI-induced increases in nitric oxide and myeloperoxidase were reduced (p < 0.05) by 3-IPA co-treatment. In addition, 3-IPA reversed EPI-mediated alterations in alanine aminotransferase (ALT), aspartate amino transaminases (AST), lactate dehydrogenase (LDH), cardiac troponin T (cTnT), and serum lipid profile including total cholesterol and triglycerides. Microscopic examination of the cardiac tissues showed that histopathological lesions severity induced by EPI was lesser in 3-IPA co-treated rats. Our findings demonstrate that supplementing endogenously derived 3-IPA can enhance antioxidant protection in the cardiac tissue susceptible to EPI toxicity in female rats. These findings may benefit breast cancer patients undergoing chemotherapy by further validating these experimental data.


Assuntos
Neoplasias da Mama , Cardiotoxicidade , Humanos , Ratos , Feminino , Animais , Epirubicina/toxicidade , Epirubicina/metabolismo , Cardiotoxicidade/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Ratos Wistar , Antioxidantes/uso terapêutico , Troponina T , Propionatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/metabolismo , Biomarcadores/metabolismo , Estresse Oxidativo
10.
Sci Rep ; 13(1): 21246, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040866

RESUMO

3-(4-hydroxy-3-methoxyphenyl) propionic acid (HMPA) is a metabolite produced by the gut microbiota through the conversion of 4-hydroxy-3-methoxycinnamic acid (HMCA), which is a widely distributed hydroxycinnamic acid-derived metabolite found abundantly in plants. Several beneficial effects of HMPA have been suggested, such as antidiabetic properties, anticancer activities, and cognitive function improvement, in animal models and human studies. However, the intricate molecular mechanisms underlying the bioaccessibility and bioavailability profile following HMPA intake and the substantial modulation of metabolic homeostasis by HMPA require further elucidation. In this study, we effectively identified and characterized HMPA-specific GPR41 receptor, with greater affinity than HMCA. The activation of this receptor plays a crucial role in the anti-obesity effects and improvement of hepatic steatosis by stimulating the lipid catabolism pathway. For the improvement of metabolic disorders, our results provide insights into the development of functional foods, including HMPA, and preventive pharmaceuticals targeting GPR41.


Assuntos
Hempa , Metabolismo dos Lipídeos , Animais , Humanos , Hempa/metabolismo , Fígado/metabolismo , Propionatos/farmacologia , Propionatos/metabolismo
11.
J Agric Food Chem ; 71(41): 14951-14966, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788400

RESUMO

In this study, we investigated the effects of Lactobacillus johnsonii on the mouse colitis model. The results showed that the supernatant of the L. johnsonii culture alleviated colitis and remodeled gut microbiota, represented by an increased abundance of bacteria producing short-chain fatty acids, leading to an increased concentration of propionic acid in the intestine. Further studies revealed that propionic acid inhibited activation of the MAPK signaling pathway and polarization of M1 macrophages. Macrophage clearance assays confirmed that macrophages are indispensable for alleviating colitis through propionic acid. In vitro experiments showed that propionic acid directly inhibited the MAPK signaling pathway in macrophages and reduced M1 macrophage polarization, thereby inhibiting the secretion of pro-inflammatory cytokines. These findings improve our understanding of how L. johnsonii attenuates inflammatory bowel disease (IBD) and provide valuable insights for identifying molecular targets for IBD treatment in the future.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Lactobacillus johnsonii , Animais , Camundongos , Propionatos/farmacologia , Colite/metabolismo , Macrófagos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Sulfato de Dextrana/farmacologia
12.
EMBO Mol Med ; 15(12): e17836, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37766669

RESUMO

The epithelial-to-mesenchymal transition (EMT) plays a central role in the development of cancer metastasis and resistance to chemotherapy. However, its pharmacological treatment remains challenging. Here, we used an EMT-focused integrative functional genomic approach and identified an inverse association between short-chain fatty acids (propionate and butanoate) and EMT in non-small cell lung cancer (NSCLC) patients. Remarkably, treatment with propionate in vitro reinforced the epithelial transcriptional program promoting cell-to-cell contact and cell adhesion, while reducing the aggressive and chemo-resistant EMT phenotype in lung cancer cell lines. Propionate treatment also decreased the metastatic potential and limited lymph node spread in both nude mice and a genetic NSCLC mouse model. Further analysis revealed that chromatin remodeling through H3K27 acetylation (mediated by p300) is the mechanism underlying the shift toward an epithelial state upon propionate treatment. The results suggest that propionate administration has therapeutic potential in reducing NSCLC aggressiveness and warrants further clinical testing.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Propionatos/farmacologia , Propionatos/uso terapêutico , Camundongos Nus , Linhagem Celular Tumoral , Pulmão/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Movimento Celular
13.
Arch Anim Nutr ; 77(4): 290-307, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37553987

RESUMO

This study was conducted to evaluate the effect of substitution of soybean meal (SBM) for formaldehyde-treated sesame meal (FTSM) on nutrient intake and digestibility, ruminal and blood parameters and milk production and composition in lactating Murciano-Granadina goats. Forty lactating goats were randomly assigned to one of the following four treatments: (1) diet with 16.5% CP, containing SBM (CON); (2) diet with 16.5% CP, containing untreated SM (USM); (3) diet with 16.5% CP, containing FTSM (FT); and (4) diet with 14.5% CP containing FTSM (LPFT). The results showed that nutrient intake was highest in the FT group (p < 0.001), while it was similar between the CON and LPFT groups, except for the intake of CP, which was higher in the CON group. The FT and LPFT had lower ruminal pH compared to CON and USM groups (p < 0.001), with goats in group FT having the highest volatile fatty acids (VFA) production (p < 0.001). The highest propionate concentration was observed in the LPFT treatment (p < 0.001), followed by the FT, CON, and USM treatments. Goats offered USM and LPFT treatments presented the highest and lowest acetate: propionate values, respectively, among the experimental groups (p < 0.001). The results also showed that LPFT goats had the lowest blood urea nitrogen (BUN) level (p = 0.004), while FT goats presented a lower non-esterified FA (NEFA) level compared with CON and LPFT goats (p = 0.01). Goats offered the FT diet had the highest milk yield (p = 0.002) and energy-corrected milk yield (p < 0.001) among all dietary groups. The highest milk fat (p < 0.001), protein (p = 0.001), lactose (p = 0.007), total solids (p = 0.003), and solids-not-fat (SNF) (p = 0.003) contents were observed in FT goats, which didn't differ from USM goats. The inclusion of formaldehyde-treated SM increased the percentage of C18:3 (p < 0.001) and C20:1 (p = 0.04) FAs compared with USM and CON treatments. Milk from USM, FT, and LPFT goats had lower levels of saturated (p < 0.001) and medium-chain FAs (p = 0.014) compared with CON goats, whereas milk from CON goats had lower levels of unsaturated, monounsaturated, and long-chain FAs compared to other groups (p < 0.001). The lowest and the highest concentrations of polyunsaturated FAs were observed in CON and LPFT goats, respectively (p = 0.001). It can be concluded that SBM can be advantageously replaced by formaldehyde-treated SM in the diet as a feasible alternative to improve feed intake and production performance of dairy goats.


Assuntos
Leite , Sesamum , Feminino , Animais , Leite/química , Dieta/veterinária , Lactação , Propionatos/análise , Propionatos/metabolismo , Propionatos/farmacologia , Farinha , Ração Animal/análise , Ingestão de Alimentos , Glycine max/química , Formaldeído/análise , Formaldeído/metabolismo , Formaldeído/farmacologia , Cabras , Rúmen/metabolismo , Digestão
14.
Sci Rep ; 13(1): 13248, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582965

RESUMO

Propionic acid (PPA) is used to study the role of mitochondrial dysfunction in neurodevelopmental conditions like autism spectrum disorders. PPA is known to disrupt mitochondrial biogenesis, metabolism, and turnover. However, the effect of PPA on mitochondrial dynamics, fission, and fusion remains challenging to study due to the complex temporal nature of these mechanisms. Here, we use complementary quantitative visualization techniques to examine how PPA influences mitochondrial ultrastructure, morphology, and dynamics in neuronal-like SH-SY5Y cells. PPA (5 mM) induced a significant decrease in mitochondrial area (p < 0.01), Feret's diameter and perimeter (p < 0.05), and in area2 (p < 0.01). Mitochondrial event localiser analysis demonstrated a significant increase in fission and fusion events (p < 0.05) that preserved mitochondrial network integrity under stress. Moreover, mRNA expression of cMYC (p < 0.0001), NRF1 (p < 0.01), TFAM (p < 0.05), STOML2 (p < 0.0001), and OPA1 (p < 0.01) was significantly decreased. This illustrates a remodeling of mitochondrial morphology, biogenesis, and dynamics to preserve function under stress. Our data provide new insights into the influence of PPA on mitochondrial dynamics and highlight the utility of visualization techniques to study the complex regulatory mechanisms involved in the mitochondrial stress response.


Assuntos
Neuroblastoma , Humanos , Neuroblastoma/metabolismo , Mitocôndrias/metabolismo , Propionatos/farmacologia , Propionatos/metabolismo , Linhagem Celular Tumoral , Dinâmica Mitocondrial
15.
Toxins (Basel) ; 15(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37505707

RESUMO

Subacute ruminal acidosis (SARA) is a prevalent disease in intensive dairy farming, and the rumen environment of diseased cows acidifies, leading to the rupture of gram-negative bacteria to release lipopolysaccharide (LPS). LPS can cause rumentitis and other complications, such as liver abscess, mastitis and laminitis. Propionate, commonly used in the dairy industry as a feed additive, has anti-inflammatory effects, but its mechanism is unclear. This study aims to investigate whether sodium propionate (SP) reduces LPS-induced inflammation in rumen epithelial cells (RECs) and the underlying mechanism. RECs were stimulated with different time (0, 1, 3, 6, 9, 18 h) and different concentrations of LPS (0, 1, 5, 10 µg/mL) to establish an inflammation model. Then, RECs were treated with SP (15, 25, 35 mM) or 10 µM PDTC in advance and stimulated by LPS for the assessment. The results showed that LPS (6h and 10 µg/mL) could stimulate the phosphorylation of NF-κB p65, IκB, JNK, ERK and p38 MAPK through TLR4, and increase the release of TNF-α, IL-1ß and IL-6. SP (35 mM) can reduce the expression of cytokines by effectively inhibiting the NF-κB and MAPK inflammatory pathways. This study confirmed that SP inhibited LPS-induced inflammatory responses through NF-κB and MAPK in RECs, providing potential therapeutic targets and drugs for the prevention and treatment of SARA.


Assuntos
NF-kappa B , Propionatos , Feminino , Bovinos , Animais , NF-kappa B/metabolismo , Propionatos/farmacologia , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Rúmen/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Células Epiteliais/metabolismo
16.
Molecules ; 28(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446563

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a progressive urological disease occurring in middle-aged and elderly men, which can be characterized by the non-malignant overgrowth of stromal and epithelial cells in the transition zone of the prostate. Previous studies have demonstrated that lycopene can inhibit proliferation, while curcumin can strongly inhibit inflammation. This study aims to determine the inhibitory effect of the combination of lycopene and curcumin on BPH. METHOD: To induce BPH models in vitro and in vivo, the BPH-1 cell line and Sprague Dawley (SD) rats were used, respectively. Rats were divided into six groups and treated daily with a vehicle, lycopene (12.5 mg/kg), curcumin (2.4 mg/kg), a combination of lycopene and curcumin (12.5 mg/kg + 2.4 mg/kg) or finasteride (5 mg/kg). Histologic sections were examined via hematoxylin and eosin (H&E) staining and immunohistochemistry. Hormone and inflammatory indicators were detected via ELISA. Network pharmacology analysis was used to fully predict the therapeutic mechanism of the combination of lycopene and curcumin on BPH. RESULTS: Combination treatment significantly attenuated prostate hyperplasia, alleviated BPH pathological features and decreased the expression of Ki-67 in rats. The upregulation of the expression of testosterone, dihydrotestosterone (DHT), 5α-reductase, estradiol (E2) and prostate-specific antigen (PSA) in BPH rats was significantly blocked by the combination treatment. The expression levels of inflammatory factors including interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α were strongly inhibited by the combination treatment. From the network pharmacology analysis, it was found that the main targets for inhibiting BPH are AKT1, TNF, EGFR, STAT3 and PTGS2, which are enriched in pathways in cancer. CONCLUSION: The lycopene and curcumin combination is a potential and more effective agent to prevent or treat BPH.


Assuntos
Curcumina , Hiperplasia Prostática , Propionato de Testosterona , Masculino , Humanos , Ratos , Animais , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Propionato de Testosterona/efeitos adversos , Ratos Sprague-Dawley , Licopeno/farmacologia , Licopeno/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Propionatos/farmacologia , Extratos Vegetais/farmacologia , Testosterona/metabolismo , Inflamação/tratamento farmacológico , Proliferação de Células
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(1): 33-45, 2023 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37283116

RESUMO

OBJECTIVES: To explore the effect and mechanism of Chinese medicine Bushen Huatan formula in treatment of polycystic ovary syndrome (PCOS). METHODS: Twenty-four SPF female C57BL/6J mice were randomly divided into 3 groups with 8 animals in each group. Control group was given drinking water ad libitum; PCOS was induced by giving letrozole gavage and high-fat diet in model group and treatment group; treatment group received Bushen Huatan formula suspension for 35 d. The sex hormone levels of mice were detected by enzyme-linked immunosorbent assay. Ovary morphology was observed under light microscope after hematoxylin and eosin staining. The feces in the colon of mice were collected, and the gut microbiota was detected by 16S rRNA sequencing. The short chain fatty acids were detected by gas chromatography-mas spectrometry. The expression of peroxisome proliferator activated receptor (PPARγ) was detected by immunohistochemistry. The mRNA expression of mucin-2, occludin-1, tight junction protein zonula occludens 1 (ZO-1) and PPARγ in intestinal epithelium were detected by realtime RT-PCR. The expression of inducible nitric oxide synthase (iNOS) and PPARγ was detected by Western blotting. RESULTS: Compared with the control group, the body weight, serum levels of follicle stimulating hormone, luteinizing hormone and testosterone in the model group were increased, and serum levels of estradiol were decreased (all P<0.01); the ovarian structure under light microscope was consistent with the characteristics of PCOS. Compared with the model group, the serum levels of sex hormone and ovarian structure in treatment group were improved. The overall structure of gut microbiota in PCOS model mice changed. Compared with control group, there were significantly reduced abundance of Firmicutes, and increased abundance of Verrucomicrobia, Proteobacteria and Actinobacteria inthe model group at phylum level (all P<0.05); there were significantly reduced abundance of Lactobacillus, and increased abundance of Akkermansia, Lachnoclostridium, Lactococcus and Eubacterium_coprostanoligenes at genus level (all P<0.05). The disordered condition of gut microbiota was significantly improved in treatment group. Compared with control group, the contents of acetic acid, propionic acid and butyric acid in feces of model group were significantly decreased (all P<0.05); while the contents of propionic acid and butyric acid in treatment group were significantly increased compared with model control group (both P<0.05). Compared with control group, the mRNA expression of ZO-1 and protein expression of iNOS in model group were significantly increased, and the protein expression of PPARγ and the mRNA expressions of mucin-2 and occludin-1 were significantly decreased (all P<0.05). Compared with model group, the mRNA expression of ZO-1 and protein expression of iNOS in treatment group were decreased, and the protein expression of PPARγ and the mRNA expressions of mucin-2 and occludin-1 were increased. CONCLUSIONS: PCOS induced by letrozole high-fat diet induces microflora imbalance in mice. Chinese medicine Bushen Huatan formula may increase the level of short chain fatty acid by regulating gut microbiota, thereby activating the intestinal PPARγ pathway and improving intestinal barrier function to act as a cure for PCOS.


Assuntos
Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Humanos , Camundongos , Feminino , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , PPAR gama/farmacologia , Propionatos/farmacologia , Mucina-2 , Letrozol , RNA Ribossômico 16S , Medicina Tradicional Chinesa , Ocludina/farmacologia , Camundongos Endogâmicos C57BL , Hormônios Esteroides Gonadais/farmacologia , Butiratos/farmacologia , RNA Mensageiro
18.
Nutrients ; 15(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375664

RESUMO

Low-grade inflammation and barrier disruption are increasingly acknowledged for their association with non-communicable diseases (NCDs). Short chain fatty acids (SCFAs), especially butyrate, could be a potential treatment because of their combined anti-inflammatory and barrier- protective capacities, but more insight into their mechanism of action is needed. In the present study, non-activated, lipopolysaccharide-activated and αCD3/CD28-activated peripheral blood mononuclear cells (PBMCs) with and without intestinal epithelial cells (IEC) Caco-2 were used to study the effect of butyrate on barrier function, cytokine release and immune cell phenotype. A Caco-2 model was used to compare the capacities of butyrate, propionate and acetate and study their mechanism of action, while investigating the contribution of lipoxygenase (LOX), cyclooxygenase (COX) and histone deacetylase (HDAC) inhibition. Butyrate protected against inflammatory-induced barrier disruption while modulating inflammatory cytokine release by activated PBMCs (interleukin-1 beta↑, tumor necrosis factor alpha↓, interleukin-17a↓, interferon gamma↓, interleukin-10↓) and immune cell phenotype (regulatory T-cells↓, T helper 17 cells↓, T helper 1 cells↓) in the PBMC/Caco-2 co-culture model. Similar suppression of immune activation was shown in absence of IEC. Butyrate, propionate and acetate reduced inflammatory cytokine-induced IEC activation and, in particular, butyrate was capable of fully protecting against cytokine-induced epithelial permeability for a prolonged period. Different HDAC inhibitors could mimic this barrier-protective effect, showing HDAC might be involved in the mechanism of action of butyrate, whereas LOX and COX did not show involvement. These results show the importance of sufficient butyrate levels to maintain intestinal homeostasis.


Assuntos
Butiratos , Citocinas , Humanos , Butiratos/farmacologia , Leucócitos Mononucleares , Técnicas de Cocultura , Histona Desacetilases , Células CACO-2 , Propionatos/farmacologia , Interleucinas , Mucosa Intestinal
19.
Molecules ; 28(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175218

RESUMO

To this day, the quest to find new drugs is still a challenge due to the growing demands of patients suffering from chronic inflammatory diseases and the need for the individualization of therapy. The aim of this research was to synthesize new 1,2,4-triazole derivatives containing propanoic acid moiety and to investigate their anti-inflammatory, antibacterial and anthelmintic activity. Compounds 3a-3g were obtained in reactions of amidrazones 1a-1g with succinic anhydride. Several analyses of proton and carbon nuclear magnetic resonance (1H NMR, 13C NMR, respectively), as well as high-resolution mass spectra (HRMS), confirmed the structures of 1,2,4-triazole derivatives 3a-3g. Toxicity, antiproliferative activity and influence on cytokine release (TNF-α: Tumor Necrosis Factor-α, IL-6: Interleukin-6, IFN-γ: Interferon-γ, and IL-10: Interleukin-10) of the compounds 3a-3g were evaluated in peripheral blood mononuclear cells culture. Moreover, mitogen-stimulated cell culture was used for biological activity tests. The antimicrobial and anthelmintic activity of derivatives 3a-3g were studied against Gram-positive and Gram-negative bacterial strains and Rhabditis sp. culture. Despite the lack of toxicity, compounds 3a-3g significantly reduced the level of TNF-α. Derivatives 3a, 3c and 3e also decreased the release of IFN-γ. Taking all of the results into consideration, compounds 3a, 3c and 3e show the most beneficial anti-inflammatory effects.


Assuntos
Anti-Infecciosos , Propionatos , Humanos , Propionatos/farmacologia , Fator de Necrose Tumoral alfa , Leucócitos Mononucleares , Anti-Inflamatórios/farmacologia , Interleucina-6
20.
PLoS One ; 18(4): e0268363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37022990

RESUMO

Positive allosteric modulators for free fatty acid receptor 2 (FFAR2/GPR43), that affect receptor function through binding to two distinct allosteric binding sites, were used to determine the correlation between the responses induced in neutrophils by two distinct activation modes; FFAR2 was activated either by the orthosteric agonist propionate or by a receptor transactivation mechanism that activated FFAR2 from the cytosolic side of the neutrophil plasma membrane by signals generated by the neutrophil PAFR (receptor for platelet activating factor), P2Y2R (receptor for ATP), FPR1 (receptor for fMLF) and FPR2 (receptor for WKYMVM). We show that the transactivation signals that activate FFAR2 in the absence of any orthosteric agonist were generated downstream of the signaling G protein that couple to PAFR and P2Y2R. This transactivation of allosterically modulated FFAR2s, by signals generated by PAFR/P2Y2R, represents a novel mechanism by which a G protein coupled receptor can be activated. Weak correlations were obtained when the FFAR2 activity was induced by the transactivation signals generated by PAFRs and P2Y2Rs were compared with the FFAR2 activity induced by the orthosteric agonist propionate. Comparison of the responses for each allosteric modulator revealed that the ratio values, calculated from the peak values of the ATP and propionate responses, varied from 0.2 to 1. Depending on the allosteric modulator, the response induced by the two different mechanisms (orthosteric activation and receptor transactivation, respectively), was equal or the propionate response was more pronounced. Importantly, we conclude that FFAR2 activation from outside (orthosteric activation) and inside (receptor cross-talk/transactivation) can be selectively affected by an allosteric FFAR2 modulator.


Assuntos
Neutrófilos , Propionatos , Neutrófilos/metabolismo , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Regulação Alostérica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA